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The fate of an mRNA is largely determined by its interactions with RNA binding proteins (RBPs). Post-
transcriptional processing, RNA stability, localisation and translation are some of the events regulated by
the plethora of RBPs present within cells. Mutations in various RBPs cause several diseases of the central
nervous system, including frontotemporal lobar degeneration, amyotrophic lateral sclerosis and fragile X
syndrome. Here we review the studies that integrated UV-induced cross-linked immunoprecipitation
(CLIP) with other genome-wide methods to comprehensively characterise the function of diverse RBPs in
the brain. We discuss the technical challenges of these studies and review the strategies that can be used
to reliably identify the RNAs bound and regulated by an RBP. We conclude by highlighting how CLIP and
related techniques have been instrumental in addressing the role of RBPs in neurologic diseases.
This article is part of a Special Issue entitled: RNA and splicing regulation in neurodegeneration.
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Introduction

As anmRNA progresses through the various regulatory stages, from
transcription to translation and degradation, it is associatedwith amyr-
iad of multifunctional RNA-binding proteins (RBPs). Indeed, recent
studies suggest that hundreds of RBPs interact with mRNAs to collec-
tively determine their fate (Baltz et al., 2012; Castello et al., 2012). For
example, many RBPs are components of multi-protein complexes such
as the spliceosomeor ribosome thatmediate specific aspects of gene ex-
pression. Others can directly interact with pre-mRNAs, mRNAs and
other non-coding RNAs to control their processing, localisation, stability
and structure. The importance of RBPs is further highlighted by the fact
that aberrant RBP interactions with RNA can lead to several human pa-
thologies, including neurodegenerative diseases, making their study of
great importance. Here we briefly discuss what the genome-wide tech-
nologies have taught us about post-transcriptional regulation by RBPs
that are implicated in neurodegenerative disease.

Identifying the RNA targets of an RBP

A crucial challenge of researchers studying the functions of RBPs is
to identify the RNAs regulated by a specific RBP. CLIP enables study of
A and splicing regulation in
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RBP–RNA interactions that occur in intact cells or tissues since the bio-
logical samples are UV cross-linked, forming a covalent bond between
the RNAs in direct contact with the RBP. The RBP-of-interest is then
immuno precipitated, and the co-purified RNA is ligated to adapters
that enable production of cDNA libraries for sequencing (Ule et al.,
2003) (Fig. 1A). CLIP allows unbiased transcriptome-wide analysis of
protein–RNA interactions, which is a crucial step towards unravelling
the mechanisms of post-transcriptional regulatory networks. However,
it is important to appreciate the challenges of CLIP, and the need to in-
tegrate it with other technologies.

A common expectation from the CLIP studies is that theywill direct-
ly generate a shortlist of the functionally relevant RNA targets, enabling
the study of pathological relevance of these RNAs and the development
of new RNA-based therapies. CLIP is clearly a step towards this goal.
However, each RBP can regulate a great multitude of RNAs by diverse
mechanisms which presents a greater challenge than appreciated at
first sight. The frequency of CLIP sequence reads that identify a specific
site depends not only on the affinity of the RBP for this site, but also on
the RNA abundance. It is clear that RNA abundance varies between
genes, and can vary also within each gene due to variable kinetics of
transcription, splicing and intronic RNA degradation. It remains chal-
lenging to adequately account for these factors in data analysis. The ten-
dency to report the absolute number of RNA targets should thus be
approached with caution, since these numbers depend on the variable
quantitative quality of CLIP cDNA libraries and require the use of arbi-
trary binding thresholds. In appreciation of these points, we describe
several approaches that can be used to increase the confidence in
assigning functionally relevant RNA targets of RBPs.
ts reserved.

otein–RNA interactions important for neurodegenerative disorders,
/j.mcn.2013.04.002

http://dx.doi.org/10.1016/j.mcn.2013.04.002
mailto:j.ule@ucl.ac.uk
mailto:c.sibley@ucl.ac.uk
http://dx.doi.org/10.1016/j.mcn.2013.04.002
http://www.sciencedirect.com/science/journal/10447431
http://dx.doi.org/10.1016/j.mcn.2013.04.002


B) Normalisation to 
transcript abundance

C) Evolutionary conservation of binding site

E) RNA maps relating RBP binding to function

Exon exclusion

Exon inclusion

RBP

RBP

254nM UV
+5’ 3’

254nM UV cross-
linking in vivo 

Lysis

Immuno-precipitation 
and 3’ adapter ligation

RNA isolation, 5’ adapter 
ligation & reverse transcription

iCLIP

A) CLIP approaches

D) Independent high-throughput approaches

AAAAA

AAAAA

AAAAA

Ribosome profiling Fractionation and RNAseq

PhyloP vertebrate conservation

Neogenin 1

Neogenin 1

Mouse
Rat
Human
Dog
Zebrafish

G T T A A G C A T C T C T C T G T C T T G T G T T C A T C C A C A G C T G T G A T T A G T G C C C A T C C C A T C C A T T C C C T C G A T A A C C C T C A

G T T A A G C A T C T C T C T G T C T T G T G T T C A T C C A C A G    V   I   S   A   H   P   I   H   D   L   D   N   P   H
G T T A A G C A T C T C T C T G T C T T G T G T T C A T T C A C A G    V   I   S   A   H   P   I   H   D   L   D   N   P   H
G T T A A G C A T T T C T C T G T C T T G T G T T C A T T C A C A G    V   I   S   A   H   P   I   H   D   L   D   N   P   H
G T T A A G C A C T T C T C T G T C T T G T G T T C A T C C A C A G    V   I   S   A   H   P   I   H   D   L   D   N   P   H
= = = = = = = = = C = = C T T G T T T - G T G T C C A T T C A C A G    V   I   S   A   H   P   I   H   D   L   D   N   H   H

PhyloP vertebrate conservation

Repressive Nova 
binding sites

 P
 P
 P
 P
 P

HITS-CLIP
CLIP-Seq

RNA isolation & 
reverse transcription

PCR and high-throughput 
sequencing

Circularisation

Linearisation, PCR and high-
throughput sequencing

0-20%

80-100%

e.g. Nova

 chr5 143,665,000143,665,500

 100

 0

15

0

RNAseq

TDP-43 iCLIP

Actb

chr3 80,490,00080,491,00080,492,00080,493,000

 100

0

 50

0

RNAseq

TDP-43 iCLIP

Gria2

Fig. 1. Identifying RNA targets of an RBP with CLIP. A) Schematic representation of HITS-CLIP, CLIP-Seq and iCLIP procedures. Samples are initially cross-linked with 254 nm UV
before being lysed and the RBP-of-interest immuno precipitated together with bound RNA. A 3′ adapter is ligated to the RNA and integrity of RBP–RNA complexes examined fol-
lowing isotopic labelling and denaturing electrophoresis (not shown). RNA is released from the RBP by proteinase digestion. In standard CLIP protocol (used in HITS-CLIP, CLIP-Seq
and PAR-CLIP), a 5′ adapter is ligated to the released RNA— therefore, only the cDNAs that pass across the cross-link site can be identified. In iCLIP, the second adapter is included as
an overhang on the primer used for reverse transcription. Circularisation of cDNAs, followed by linearisation, enables iCLIP to identify the cDNAs truncating at the cross-link site. B)
Normalisation to RNAseq reveals enriched clusters of TDP-43 binding to the Gria2 3′UTR above background in the embryonic day 18 mouse brain (red box), and shows that binding
to the 3′UTR of the β-actin transcript is an artefact of high RNA abundance. Scales on y-axis represent number of CLIP/RNAseq tags detected. C) Evolutionary conservation of re-
pressive Nova binding sites around an alternative exon of Neogenin 1. D) Confidence in the identification of CLIP targets can be improved when CLIP data is compared to other
high-throughput approaches in which the RBP is manipulated. This can include ribosome profiling and knockdown RNAseq analysis of different cell fractions to assess changes
in locations. E) CLIP data can be integrated into RNA maps which predict how RBP binding determines mechanistic outcomes on an RNA target.
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Produce CLIP data with high resolution and quantitative nature

The original CLIP method (Ule et al., 2003), which was used also in
HITS-CLIP and CLIP-Seq protocols (Licatalosi et al., 2008; Yeo et al.,
Please cite this article as: Modic, M., et al., CLIPing the brain: Studies of pr
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2009), had not been optimised for the purpose of high-throughput se-
quencing. Therefore, when a limited amount of starting material is
available, this methodmay generate cDNA libraries that contain a limit-
ed number of unique sequence reads. UV cross-linking employed by all
otein–RNA interactions important for neurodegenerative disorders,
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CLIP methods leads to formation of a covalent bond between the RNA
and protein. Upon proteinase digestion to release the RNA after immu-
noprecipitation, a short poly-peptide is left at the cross-link site which
subsequently stalls reverse transcription in 80–100% of cDNAs
(Sugimoto et al., 2012). The original CLIP method relies on read-
through across the deposited polypeptide during reverse transcription
into a 5′ adapter, and therefore doesn't identify the majority of cDNAs
that truncate at cross-link sites. This loss is avoided by the individual
nucleotide resolution CLIP (iCLIP), amethod that captures the truncated
cDNAs resulting from stalled reverse transcription and thereby enables
a more efficient and comprehensive analysis of protein–RNA interac-
tions (Konig et al., 2010) (Fig. 1A). Importantly, the truncation sites in
iCLIP enable nucleotide-resolution analysis of cross-link sites.

The challenge to identify functionally relevant RBP targets of an
RBP is particularly great for RBPs that bind to pre-mRNAs in the nu-
cleus. Due to the great length of pre-mRNAs, a binding site for an
RBP is present in most expressed pre-mRNAs. If sequencing is carried
out to sufficient depth, CLIP studies typically identify multiple binding
sites of each RBP in most expressed pre-mRNAs. It is therefore crucial
that CLIP data are quantitative, in order to identify discrete regions
where high cross-linking density corresponds to high-affinity bind-
ing. iCLIP was developed to preserve the quantitative information
by using primers for reverse transcription that contain a random
barcode. Analysis of this random sequence enables computational fil-
tering of high-throughput sequencing data to remove the artefacts
caused by variable PCR amplification of different sequences
(Sugimoto et al., 2012).

An alternative method to increase the efficiency of CLIP employs
photoactivatable ribonucleoside enhanced cross-linking and immuno-
precipitation (PAR-CLIP) (Hafner et al., 2010). However, this method
has yet to be used in the brain due to challenges facing the required in-
corporation of synthetic nucleosides in vivo. A recent review on these
technologies provides a more detailed discussion on the quality-
control steps that can be taken when using these and other high-
throughput studies for studying protein–RNA interactions (Konig et
al., 2011).

Produce a rank-ordered list of RNA-abundance normalised data

A crucial step in the analysis of CLIP data is to identify sites where
RBPs bind with high-affinity, which can be identified by clusters of
reads (in CLIP) or clusters of cross-link events (in iCLIP or PAR-CLIP).
This in turn acts to reduce the prediction of false positive RNA targets.
The most common approach used in the past studies is to calculate
the probability that a cluster of reads that is present in a specific geno-
mic region (such as an intron or a gene) is statistically significant
when real CLIP data are compared to randomised CLIP data within the
same region (Konig et al., 2010; Yeo et al., 2009). This approach is par-
ticularly appropriate for studying intronic binding events, since intronic
RNA abundance has rarely been comprehensively quantified with cur-
rent high-throughput sequencing methods. One way to approximately
measure intronic abundance is to use the average intronic read density
of CLIP data.

To normalise mRNA abundance for RBPs that bind to mRNAs,
mRNA sequencing (RNAseq) should be carried out simultaneously
with CLIP experiments, and used to normalise the number of CLIP
reads by the RNAseq reads (Kishore et al. 2011) (Fig. 1B). The primary
objective of this approach is to filter the regions with enriched CLIP
reads from those which have widespread CLIP reads due to high
RNA abundance. This normalisation is particularly important when
CLIPing from heterogenous populations of cells in the brain, where
expression of mRNA targets can vary greatly, and often the mRNAs
with low expression have important cell-type specific functions. The
CLIP/RNAseq ratio can then be used to produce a rank-ordered list
of RNAs (Darnell et al., 2011; Konig et al., 2010; Polymenidou et al.,
2011). Past studies have defined groups of high, medium and low
Please cite this article as: Modic, M., et al., CLIPing the brain: Studies of pr
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confidence targets for further analyses (Darnell et al., 2011; Konig et
al., 2010; Polymenidou et al., 2011). An alternative approach would
be to avoid the arbitrary thresholds, and instead use rank-ordered
lists as in the Sylamer method, which detects microRNA target sites
from a rank-ordered list of genes (van Dongen et al., 2008). A similar
approach has recently been used to evaluate the likely mRNA targets
of FMRP (Ascano et al., 2012).

Use comparative genomics to identify the conserved binding sites

Evolutionary conservation of the sequencemotifs bound by the pro-
tein can support the functional importance of the RNA binding site
(Fig. 1C). For instance, analysis of the RNAmotifs that confer Nova bind-
ing around its regulated exons demonstrated their high conservation
between vertebrate species in CLIP identified targets (Jelen et al.,
2007). It was found that the most highly conserved Nova binding sites
were in genes with indispensable functions in synaptic development.
Nevertheless, it must be considered that the analysis of conserved
siteswill bias against the sites that are functional and contribute to phe-
notypic diversity within and between species.

Use independent functional methods

Genome-wide studies have revealed that RBPs often control di-
verse aspects of post-transcriptional regulation. Initial biochemical
studies were based on a small number of regulated RNAs, therefore
RBPs that regulate splicing were often classified as splicing repressors
or enhancers. Studies of Nova showed that it can enhance or repress
exon inclusion in many different RNA targets (Ule et al., 2005), and
this has now been seen also for most other RBPs within the subset
that are implicated in splicing regulation (Witten and Ule, 2011).
Moreover, Nova governs the usage of alternative polyadenylation
sites (Licatalosi et al., 2008), and can also control mRNA localisation
(Racca et al., 2010). Similarly, a comprehensive functional evaluation
of Mbnl1 demonstrated its functions in pre-mRNA processing, trans-
lation and control of RNA localisation (Wang et al., 2012). Specifically
it was found that Mbnl1 bound transcripts showed a change in ribo-
somal footprints and redistribution from the membrane fraction to
the insoluble fraction upon Mbnl1/Mbnl2 knockdown. Due to this
multifunctionality of RBPs, the full functional validation of CLIP
datasets will remain a challenge in the years to come. Integration of
CLIP with multiple genome-wide methods including RNAseq,
ribosom profiling (Ingolia et al., 2011), mRNA localisation studies
(Wang et al., 2012) and others will be required to determine the
full set of functionally relevant RNA targets of an RBP (Fig. 1D).

Define position-dependent regulatory principles, or “RNA maps”

Integration of CLIP data with analysis of global changes of splicing
has been used to identify the global positional principles governing
the splicing functions of Nova (Licatalosi et al., 2008; Ule et al., 2006).
The combined findings excitingly identified a position-dependent regu-
lation of these transcripts by Nova proteins and were used to define an
RNA map in which exon exclusion is facilitated by binding close to
branch points, splice sites or within exons, and exon inclusion favoured
by Nova binding downstream of exons (Fig. 1E). Notably, binding sites
close to the flanking exons also mediated predictable outcomes (Ule
et al., 2006). Among others, this approach has now been used for
TDP-43/TARDBP (herein referred to as TDP-43) (Polymenidou et al.,
2011; Tollervey et al., 2011a), TIA1/TIAL1 (Wang et al., 2010), FUS/TLS
(herein referred to as FUS) (Lagier-Tourenne et al., 2012; Rogelj et al.,
2012), FOX2 (Yeo et al., 2009), PTBP1 (Xue et al., 2009) and Mbnl1
(Wang et al., 2012), and has shown that many RBPs have common po-
sitional principles in the regulation of splicing. Moreover, an RNA map
also underlined the position-dependent activity of Nova proteins in al-
ternative polyadenylation (Licatalosi et al., 2008).
otein–RNA interactions important for neurodegenerative disorders,
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The integrative analysis has three main advantages. Firstly, the
RNA map can validate the high quality of data by demonstrating
that binding position correlates with the effect of the protein (en-
hanced vs. repressed), and that binding at these positions in the reg-
ulated RNAs is significantly enriched relative to the control RNAs.
Secondly, since the RNA map defines the positions where RBPs bind
to have functional impact, it enables separation of those changes ob-
served in RNAseq data that are the result of direct effects of the RBP
from those that may result from indirect effects. This is particularly
important for studies in the brain, since manipulation of RBPs can
lead to developmental defects, cell stress, changes in neuronal net-
works or glia–neuron interactions, siRNA off-targets, and other effects
that can indirectly change gene expression. Thirdly, the positional
pattern in the RNA map can reveal new regulatory mechanisms
employed by the RBPs. For instance, RNA maps demonstrated that
the enhancer elements are most often located immediately down-
stream of exons. Moreover, they showed that certain RBPs can also
regulate splicing via distal binding sites (Witten and Ule, 2011).

CLIPing the brain in health and disease

To date, RNA binding profiles of several RBPs involved in neuro-
logic disorders have been investigated either in cell culture, transgen-
ic animal models, or human post-mortem tissue (Table 1). Here we
choose representative RBPs to demonstrate how CLIP studies helped
understand their activity in the CNS, and thereby provide the founda-
tion for understanding their role in disease pathologies.

Nova

Paraneoplastic opsoclonus myoclonus ataxia is a neurological disor-
der mediated by autoimmune attack against onconeural disease anti-
gens including Nova-1 (Buckanovich et al., 1993) and Nova-2 (Yang
et al., 1998), and was the study of initial CLIP experiments. Low-
throughput (Ule et al., 2003) and, more recently, high-throughput
(Licatalosi et al., 2008) sequencing of Nova CLIP libraries revealed the
RNA map in which exon exclusion is facilitated by binding close to
Table 1
CLIP studies on RBPs implicated in neurological function in health and disease. Abbreviation
tein, FMRP— fragile-X mental retardation protein, MBNL1/2—muscleblind-like protein 1/2,
binding protein 2, PARK7 — Parkinson protein 7, ELAVL1 — embryonic lethal, abnormal vis

Symbol Disease Key findings

CELF4 Epilepsy Binds UGU motifs in
Hyperactivity Controls stability of

ELAVL1 Epilepsy Recognises U-rich st
Regulates transcript
Controls the synthes

FMR1 Fragile-X mental retardation Represses the transl
Autism spectrum disorders Preferred binding to

Increased associatio
Binds ACUK and WG

FUS Frontotemporal lobar degeneration, amyotrophic
lateral sclerosis

Binds along the full
Regulates alternativ
Knockdown leads to

MBNL1/2 Myotonic dystrophy (DM) Recognises UGC or G
Regulates DM-relate
Contributes to mRN

NOVA1/2 Paraneoplastic opsoclonus-myoclonus-ataxia (POMA) Binds YCAY clusters
Controls synaptogen
Regulates alternativ

PARK7 Parkinson's disease Recognises CC/GG ri
Inhibits translation o

PTBP2 Recognises UCU-rich
Regulates neural ste
Involved in mRNA tr

TARDBP Frontotemporal lobar degeneration, amyotrophic
lateral sclerosis

Recognises UG repe
Regulates alternativ
Knockdown leads to
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branch points, splice sites or within exon, and exon inclusion favoured
by binding downstreamof exons (Ule et al., 2006). Activity is specifical-
ly directed by binding to YCAY clusters within target genes, with
nuclear-cytoplasmic shuttling of certain targets possible due to Nova's
nuclear localisation and nuclear export sequences (Racca et al., 2010).
This has been followedup by showing thatNova can act outside of splic-
ing to regulate alternative polyadenylation through binding of clusters
flanking poly-A sites, although the relevance to disease remains un-
known (Licatalosi et al., 2008). By identifying the mRNAs that are di-
rectly regulated by Nova proteins (Licatalosi et al., 2008; Ule et al.,
2006), the Nova RNA map enabled studies that revealed how specific
mRNAsmediate the function of Nova proteins in the brain. In particular,
defective splicing of Agrn and Dab1 leads to defects in the formation of
the neuromuscular junction and in neuronal migration in the CNS of
the Nova1−/−/Nova2−/− mice, respectively (Ruggiu et al., 2009; Yano
et al., 2010).
FMRP

Loss of function of fragile-X mental retardation protein (FMRP) is
responsible for fragile-X syndrome, the most common inherited
form of mental retardation. FMRP is an important regulator of trans-
lation (Khandjian et al., 2004; Laggerbauer et al., 2001; Li et al.,
2001). A study using CLIP in mouse brain reported that FMRP binds
the coding sequence of mRNAs with little sequence specificity. By
uncovering FMRP interacting targets in polyribosomal enriched sam-
ples, it was shown that FMRP binding is enriched on open reading
frames of a collection of mRNAs encoding synaptic transcripts, includ-
ing multiple receptor complexes and G-protein signalling pathways
(Darnell et al., 2011). A recent study using FMRP PAR-CLIP in
HEK293 cells additionally reported two binding motifs recognised
by FMRP: ACUK and WGGA (in which K = G or U and W = A or
U). An integration of PAR-CLIP data with motif analysis was used to
determine a ranked enrichment of FMRP mRNA targets. Interestingly,
93 of the top ranked genes are implicated in autism spectrum disor-
ders (Angelman, Prader–Willi, Rett, and Cornelia de Lange syndromes).
FMRP was found to regulate protein levels of several of these genes in
s: NOVA1/2 — neuro-oncological ventral antigen 1/2, TARDP — TAR DNA binding pro-
FUS/TLS— fused in sarcoma/translocated in liposarcoma, PTBP2— polypyrimidine tract
ion, Drosophila-like 1, CELF4 — CUGBP Elav-like family member 4.

Reference

3′UTRs. Wagnon et al. (2012)
mRNAs encoding synaptic proteins.
retches interspersed with Gs. Ince-Dunn et al. (2012)
stability.
is of glutamate.
ation of target mRNAs. Darnell et al. (2011)
the coding region of exons. Ascano et al. (2012)
n with transcripts encoding synaptic proteins.
GA (in which K = G or U and W = A or U) motifs.
length of pre-mRNAs. Ishigaki et al. (2012)
e splicing of many neuronal development genes. Rogelj et al. (2012)
decreased expression of long genes in the brain. Lagier-Tourenne et al. (2012)
CU-containing 4-mer clusters. Wang et al. (2012)
d alternative splicing. Charizanis et al. (2012)
A localisation and translation by binding to 3′UTRs.
to regulate alternative splicing. Licatalosi et al. (2008)
esis and neuronal migration via specific mRNAs. Ruggiu et al. (2009)
e poly-adenylation in the brain. Yano et al. (2010)
ch regions. van der Brug et al. (2008)
f target mRNAs.
motifs to regulate alternative splicing. Licatalosi et al. (2012)

m cell polarity in developing brain.
afficking stability and translation.
ats and UG-rich motifs in introns and 3′ UTRs. Tollervey et al. (2011a)
e splicing of many neuronal development genes. Polymenidou et al. (2011)
decreased expression of long genes in the brain.
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human cell culture, mouse ovaries and human brain (Ascano et al.,
2012). Interestingly, a recent study of CELF4, another neuronal RBP,
showed that it shares more than 30% of its RNA targets with FMRP,
and is evenmore strongly enriched in transcripts linked to autism spec-
trum disorders (Wagnon et al., 2012).

Mbnl

Muscleblind-like proteins (Mbnl1 and Mbnl2) are sequestered in
various tissues within the neuromuscular diseases of myotonic dys-
trophy types 1 (DM1) and 2 (DM2) in response to expansions of
CUG repeats in the 3′UTR of the myotonic dystrophy protein kinase
(DMPK) (Harley et al., 1992; Mahadevan et al., 1992), or CCUG re-
peats in the zinc finger protein 9 (ZNF9) (Ranum et al., 1998), respec-
tively. Previously known to be regulators of splicing, two groups have
now integrated CLIP, RNAseq and ribosome profiling to confirm that
nuclear Mbnl proteins bind introns, coding sequences and 3′UTRs at
UGC or GCU-containing 4-mers to dictate splicing changes and iden-
tify direct targets for splicing regulation based on CLIP-identified
binding (Charizanis et al., 2012; Wang et al., 2012). The RNA map re-
veals that Mbnl proteins bind in upstream introns and alternative
exons to promote exclusion, and in downstream introns to promote
inclusion of exons. Further, a previously described role of Mbnl pro-
teins in regulating localisation in the cytoplasm (Adereth et al.,
2005) was extended transcriptome-wide, whilst the aforementioned
regulation of the translation state of 3′UTRs carrying Mbnl1 binding
sites provides further insight into disease mechanisms when this pro-
tein is sequestered (Wang et al., 2012). It will now be important to as-
sess if these perturbations in patient samples with CUG repeats
correlate with disease severity.

FUS and TDP-43

ALS and FTLD are two diseases with phenotypic and mechanistic
overlap (Ferrari et al., 2011; Lagier-Tourenne and Cleveland, 2009).
Familial mutations to TDP-43 and FUS have been identified in each
disease (Broustal et al., 2010; Kabashi et al., 2008; Kwiatkowski et
al., 2009; Van Langenhove et al., 2010; Vance et al., 2009), and these
proteins aggregate abnormally in neurons during disease progression.
Despite these common links, CLIP studies of TDP-43 and FUS did not
find a significant overlap in their RNA binding sites. Whereas
TDP-43 has a strong specificity to bind distinct UG-rich RNA regions
(Polymenidou et al., 2011; Tollervey et al., 2011a), FUS binds with
mild specificity to G-rich motifs along the full-length of pre-mRNA
transcripts (Ishigaki et al., 2012; Lagier-Tourenne et al., 2012; Rogelj
et al., 2012).

Another observationmade by FUS CLIPwas a saw-tooth bindingpat-
tern along long introns, similar to that seen in total RNAseq (Ameur et
al., 2011; Lagier-Tourenne et al., 2012; Rogelj et al., 2012). However,
whether this binding profile is distinct and disease-relevant remains a
matter of debate. This pattern is readily observed for FUS in long introns
(Ameur et al., 2011; Lagier-Tourenne et al., 2012), but can also be ob-
served in shorter introns using the increased coverage and quantitative
ability of the iCLIP method (Rogelj et al., 2012). Although suggested to
be unique to FUS (Lagier-Tourenne et al., 2012), iCLIP analysis showed
that TDP-43, U2AF65 and FUS all had a linear increase in crosslinking
as the distance from the 3′ splice site increases, similar to the increase
in total RNAseq (Rogelj et al., 2012). This suggests that the saw-tooth
pattern may be an indirect result of the variable abundance of the
intronic RNA, which increases linearly with the distance from the 3′
splice site.

Interestingly, FUS and TDP-43 regulate splicing of different alter-
native exons (Lagier-Tourenne et al., 2012; Rogelj et al., 2012). How-
ever, analysis of RNAseq data showed an overlap in the long genes,
which were sensitive to loss of function of FUS and TDP-43 in trans-
genic models and in neurons derived from patients with familial
Please cite this article as: Modic, M., et al., CLIPing the brain: Studies of pr
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mutations to FUS (Lagier-Tourenne et al., 2012; Polymenidou et al.,
2011). It will be important to understand the mechanisms behind
changes in expression of long genes, and their role in disease pathol-
ogy. Whereas the effect on long genes may involve novel transcrip-
tional functions of TDP-43 and FUS, it could also result from
accumulated defects in pre-mRNA processing. RBPs can promote
stability of mRNAs by preventing recognition of cryptic exons; for ex-
ample, knockdown of hnRNPC leads to widespread expression of
cryptic exons, which can result in decreased gene expression. In the
absence of hnRNP C, cryptic exons are recognised by U2AF65, a splic-
ing factor that initiates the recognition of 3′ splice sites (Zarnack et al.,
2012). RNA splicing maps demonstrate that similar to hnRNP C, FUS
and TDP-43 bind close to 3′ splice sites to repress splicing, where
they might displace U2AF65 (Rogelj et al., 2012; Tollervey et al.,
2011a). Due to the saw-tooth pattern, U2AF65 has increased binding
in long introns (Rogelj et al., 2012), which could increase the danger
of recognising cryptic exons, and thereby decreasing expression of
long genes. Aberrant binding of U2AF65 could be caused by loss of
other RBPs that regulate splicing in the brain. Therefore, it will be im-
portant to study gene expression in transgenic models of other RBPs
to assess if the effect on long genes is specific to TDP-43 and FUS.

Future considerations for CLIP studies in the CNS

CLIP and its variants are now the primary method for studying pro-
tein–RNA interactions and we have described how several early
high-throughput studies have provided invaluable insights into the
mechanisms of neurodegenerative diseases. This includes the identifi-
cation of putative RNA targets and understanding the way in which an
RBP acts through looking at its specificity and the regions bound within
a transcript. It is likely that CLIP-based approaches will remain popular,
in part due to recent method developments making it a more robust,
and also following the recent identification of many new candidate
RBPs using the global crosslinking-based purification (Baltz et al.,
2012; Castello et al., 2012).

We explain the limitations in reporting a precise number of RNA tar-
gets of an RBP based on CLIP. CLIP tags alone are not sufficient to deter-
mine the functionally relevant binding sites of RBPs. Therefore it is
important to integrate CLIP with other approaches in order to identify
the RNAs that are bound and directly regulated by the RBPs. For RBPs
interacting with mRNAs we encourage the use of normalisation of
CLIP clusters to transcript abundance either using RNAseq, whereas
other approaches are necessary for CLIP data normalisation of RBPs
binding pre-mRNAs. Evaluation of evolutionary conservation, integra-
tion of complementary high-throughput methods, and generation of
RNA maps can help to unify the identification of functionally relevant
RNA targets for subsequent studies.

One application of CLIP that remains to be widely applied is the
study of protein–RNA interactions in human postmortem tissues
(Tollervey et al., 2011a). It is important to appreciate that cell stress
and neuronal loss can obscure the causative mechanisms in postmor-
tem tissues. This has become particularly apparent from the study of
gene expression of FTLD and Alzheimer disease temporal cortex,
which found widespread yet identical changes in gene expression
(Tollervey et al., 2011b). Whilst CLIP techniques are compatible with
partially degraded postmortem tissue, it is important to appreciate
that there are many variables in sample preparation that can affect
the quality of the sample. This can include the length to autopsy and
sample collection, as well as the fixation and freezing methods
employed. Therefore special care needs to be taken when analysing
data produced from samples collected under variable conditions.

The studies of postmortem tissues are also inevitably correlative,
since it is not possible to go back to the human tissue to manipulate
the function of the RBP. Therefore, it is important to additionally
study the relevant protein–RNA interactions in disease model sys-
tems. Transgenic animal models have been used most often but a
otein–RNA interactions important for neurodegenerative disorders,
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new opportunity is arising in the study of pluripotent stem cell (PSC)
disease models (Patani et al., 2012). Induced PSCs (iPSCs) of TDP-43
M337V mutation have now been generated which have elevated
levels of TDP-43 protein and decreased survival following neuronal
differentiation (Bilican et al., 2012), whilst FUS has already been
knocked down in differentiated neural stem cells and displayed com-
parative changes to both transgenic models and patient tissue
(Lagier-Tourenne et al., 2012). If disease phenotype continues to be
recapitulated for other disease-associated proteins, then iPSCs will
represent an invaluable sample source for future CLIP studies.

Over the next years, we can expect more CLIP studies to assess
RNA interactions of multiple RBPs at a specific stage of brain develop-
ment, which will enable comprehensive comparative studies. It will
be possible at that point to define the phenomena specific to RBPs in-
volved in neurodegenerative disorders, and separate these from the
more general aspects of protein–RNA interactions.
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